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Abstract

This report describes a feasibility study. We are interested in calculating the
angular and linear velocities of a re-entry vehicle using six acceleration signals
from a distributed accelerometer inertial measurement unit (DAIMU) [8, 10,
11, 9, 12, 13, 14]. Earlier work [12] showed that angular and linear velocity
calculation using classic nonlinear ordinary differential equation (ODE) solvers
is not practically feasible, due to mathematical and numerical difficulties. This
report demonstrates the theoretical feasibility of using model-based nonlinear
state estimation techniques to obtain the angular and linear velocities in this
problem. Practical numerical and calibration issues require additional work to
resolve.

We show that the six accelerometers in the DAIMU are not sufficient to pro-
vide observability, so additional measurements of the system states are required
(e.g. from a Global Positioning System (GPS) unit). Given the constraint
that our system cannot use GPS, we propose using the existing on-board 3-axis
magnetometer to measure angular velocity. We further show that the six non-
linear ODE’s for the vehicle kinematics can be decoupled into three ODE’s in
the angular velocity and three ODE’s in the linear velocity. This allows us to
formulate a three-state Gauss-Markov system model for the angular velocities,
using the magnetometer signals in the measurement model. This re-formulated
model is observable, allowing us to build an Extended Kalman Filter (EKF) for
estimating the angular velocities. Given the angular velocity estimates from the
EKF, the three ODE’s for the linear velocity become algebraic, and the linear
velocity can be calculated by numerical integration. Thus, we do not need direct
measurements of the linear velocity to provide observability, and the technique
is mathematically feasible.

Using a simulation example, we show that the estimator adds value over the
numerical ODE solver in the presence of measurement noise. Calculating the
velocities in the presence of significant measurement noise is not feasible with
a classic ODE solver. The EKF is able to deal effectively with the noise and
provide useful angular velocity estimates. The linear velocity estimates for this
simulation show numerical difficulties associated with the nonlinear ODE’s and
the quadrature operation.

Future work will focus on dealing with practical numerical issues and the
issue of calibrating the DAIMU to deal with uncertainties in the accelerometer
positions and locations.
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Chapter 1

Introduction

This work assesses the feasibility of using model-based nonlinear state estimation
techniques to obtain the angular and linear velocities of a re-entry vehicle from
six distributed accelerometer signals.

Conventional inertial navigation systems (INSs) use a gyroscope to measure
angular velocity and three accelerometers to measure linear velocity. For a
variety of technical reasons discussed below, it is sometimes desired to avoid
using a gyroscope in an INS. Several researchers have shown the theoretical
feasibility of avoiding gyroscopes by using signals from a specially designed
array of six accelerometers to calculate both angular velocity and linear velocity
for a rigid body in motion [1, 2, 3, 4, 5, 6]. The concept has yet to be fully
demonstrated for a re-entry vehicle.

The Lawrence Livermore National Laboratory (LLNL) is conducting a pro-
gram designed to use measurements from an accelerometer array in a re-entry
vehicle [8, 10, 11, 9, 12, 13, 14]. The array is called the distributed accelerome-
ter inertial measurement unit (DAIMU), and is designed based on the research
reported in [1]. The array uses six accelerometers mounted on the faces of a
cube as depicted in Figures (1.1) and (1.2) [8, 9].

1.1 Gyroscope vs. Accelerometer Array

Gyroscopes have the advantageous ability to measure angular velocity directly,
without the need for special calculations. Gyroscope disadvantages include high
cost, high power consumption, large volume, large weight, limited dynamic
range in acceleration measurements, and long reaction time. Accelerometer ar-
rays have the advantages of low cost, low power consumption, smaller volume,
smaller weight, large dynamic range and short reaction time. In addition, the
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Figure 1.1: DAIMU sensor configuration. The six accelerometers are mounted
at the centers of the faces of a cube.
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Figure 1.2: DAIMU assembly
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Figure 1.3: Re-entry vehicle flight profile
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array can be distributed away from the center of action of the vehicle [8, 9]. The
main disadvantages of accelerometer arrays are (1) Their velocity calculations
contain inherent errors that grow nonlinearly with mission time and spin rate,
due to fundamental mathematical/numerical issues associated with the system
physics. For this reason, the application of an accelerometer-based velocity es-
timation scheme for a spinning re-entry vehicle presents special challenges not
associated with other vehicles which do not spin. (2) For long mission times, it
is generally necessary to use additional sensors (e.g. Global Positioning System
(GPS) sensors) to bound navigation errors.

1.2 The DAIMU in a Re-Entry Vehicle

A flight profile for the re-entry vehicle is depicted simply in Figure (1.3). The ve-
hicle system requirements and performance vary over this profile. At separation,
the vehicle is gently released, so there is virtually no spin. Because of this,
numerical issues in calculating velocities are not problematic. At spinup, the
angular velocity of the vehicle reaches approximately 1.5 revolutions per second
(rps). With this increased spin rate, numerical issues become problematic. At
re-entry, the vehicle spins at approximately 13-17 rps or 22-25 rps depending
on the re-entry angle, and the numerical issues are greatly exacerbated.

1.3 Theoretical Analysis

Given six signals from the DAIMU mounted in a re-entry vehicle, the goal of this
study is to assess the feasibility of estimating the angular and linear velocities
of the vehicle. Earlier work [12] showed that angular and linear velocity calcula-
tion for the DAIMU using classic ODE solvers is not practically feasible, due to
mathematical and numerical difficulties. This report, describes an analysis that
demonstrates the theoretical feasibility of using model-based nonlinear state es-
timation techniques to obtain the angular and linear velocities in this problem.
Demonstrating practical feasibility of the estimation approach involves resolving
numerical and calibration issues. For example, we must deal with uncertainty
in the locations and sensing directions of the accelerometers (calibration to deal
with mechanical tolerances). These issues will be the subjects of future reports.

The estimation of vehicle velocities is very difficult. The ordinary differen-
tial equations (ODEs) describing the kinematics of the vehicle are nonlinear,
stiff and lead to exponentially growing spurious solutions containing drift/bias
on very short time scales [12]. The solution depends nonlinearly on the ini-
tial angular velocity vector through a quadratic centripetal acceleration term.
In addition, any noise on the measurements further disrupts solution attempts.
Thus, classical numerical solution algorithms are not sufficient for obtaining use-
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ful estimates of the angular and linear velocities over most useful time periods.
Our proposed approach is to use state-space model-based nonlinear estimation
techniques from the estimation theory, system theory and signal processing lit-
erature [17, 18, 19, 20, 21, 22, 23, 24, 26, 28, 29, 30, 31].

We first develop the six nonlinear ODEs for the vehicle kinematics [12, 15, 16]
and show that they can be put in state-space form. To be useful for estimating
the velocities, however, the state-space representation must be observable. A
system is said to be observable if measurements of the outputs contain sufficient
information to enable us to identify the internal system states x(t) [26, 28]. We
analyze the properties of the state-space system, and show that six accelerometer
measurements alone are not sufficient to ensure observability of the system. We
show, however, that observability could be achieved, if measurements of the
angular velocities were available (e.g. Global Positioning System (GPS) signals).
Unfortunately, programmatic and technical constraints preclude the use of GPS
with our vehicle [10].

Next, we show that the system can be made observable by augmenting the
acceleration measurements with angular velocity measurements from an existing
three 3-axis magnetometer currently mounted in the DAIMU assembly. This
magnetometer was originally placed in the assembly for other reasons, but it
can now serve a dual purpose [10]. We show that we can decouple the six
ODEs into three ODEs for the angular velocities and three ODEs for the linear
velocities. We then show that once the angular velocities are available from
an estimator, the three ODEs for the linear velocity become algebraic; and
the linear velocities can be calculated directly by numerical integration. This
property allows us to make the system observable by using only magnetometer
measurements of angular velocity. The need for linear velocity measurements
is obviated, at least in theory. GPS is not necessary. This observation greatly
simplifies the mathematics and minimizes the number of sensors required in the
vehicle. Thus, the estimation method is theoretically feasible.

1.4 Estimator Development and Testing

In the following sections, we present the development of a discrete-time Gauss-
Markov model and an Extended Kalman Filter (EKF) for estimating the veloc-
ities. Using a simple simulation example, we then show that the estimator adds
value over the numerical ODE solver in the presence of measurement noise. The
EKF is able to deal effectively with the noise and provide useful angular veloc-
ity estimates. The linear velocity estimates for this simulation show numerical
difficulties associated with the nonlinear ODE’s and the quadrature operation.
The final section describes practical numerical and calibration issues that must
be addressed in future work.
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Chapter 2

Kinematic Equations for
the Re-Entry Vehicle

The kinematic formulation is for a three-dimensional inertial reference frame [15,
16] denoted OI and depicted in Figure (2.1). The body frame, labeled OB

represents the frame for the re-entry vehicle. The figure depicts the case in
which there is a single accelerometer located at point P. Figure (2.2) defines
the roll, pitch and yaw axes.

We use the following notation. Vectors are generally underlined (e.g. ω(t)).
Unit vectors and sensing direction vectors, however, are deemed special and have
a “hat ”above them rather than a line under them (e.g. θ̂). Tensors/matrices
generally use capital characters and have a tilde above them (e.g. T̃ ). In the
section on Kalman Filtering, the hat and tilde take on additional meanings.

The 3X1 body frame vector rp for the position of accelerometer p (p = 1, 2,
..., 6)is given by:

rp , r1ê1 + r2ê2 + r3ê3 (2.1)

, [r1 r2 r3]T (3X1) Accelerometer position (2.2)

where ê1, ê2, ê3 are unit vectors along the orthogonal axes of the body frame
OB , ê1 = [1 0 0]T , ê2 = [0 1 0]T , and ê3 = [0 0 1]T . The 3X1 time-varying
angular velocity vector for the body is given by:

ω(t) , ω1(t)ê1 + ω2(t)ê2 + ω3(t)ê3 (2.3)

, [ω1(t) ω2(t) ω3(t)]T (3X1) Angular velocities (2.4)
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The 3X1 time-varying linear velocity vector for the body is given by:

ν(t) , ν1(t)ê1 + ν2(t)ê2 + ν3(t)ê3 (2.5)

, [ν1(t) ν2(t) ν3(t)]T (3X1) Linear velocities (2.6)

For a single accelerometer, the 3X1 accelerometer sensing direction vector θ̂
is given by:

θ̂ , θ1ê1 + θ2ê2 + θ3ê3 (2.7)

where θ̂ is determined by the designed location of the accelerometer in the
DAIMU fixture. The symbols “· ” and “× ” denote the vector inner product
and vector cross product, respectively. Given the definitions above, and letting
t denote the continuous time variable, we can write the acceleration of point P
as follows [15, 16]:

R̈p(t) = R̈b(t) + r̈p(t) + ω̇(t) × rp(t) + 2ω(t) × ṙp(t) + ω(t)[ω(t) × rp(t)] (2.8)

For a single accelerometer mounted at point P on the body, we have r̈p(t) =
ṙp(t) = 0, because the accelerometer is not moving relative to the body frame
OB . In this case, we can write:

R̈p(t) = R̈b(t) + ω̇(t) × rp(t) + ω(t)[ω(t) × rp(t)] (2.9)

Given the accelerometer sensing direction vector θ̂ and defining the acceler-
ation R̈p(t) · θ , A(t), we can write

A(t) = R̈p(t) · θ̂ (2.10)

= R̈b(t) · θ̂ + [ω̇(t) × rp(t)] · θ̂ + {ω(t)[ω(t) × rp(t)]} · θ̂ (2.11)

To simplify the notation, we can drop the b and p subscripts so R̈(t) , R̈p(t)
and r(t) , rp(t). We then define the linear velocity vector ν̇(t) , R̈(t) and write
the kinematic equation as

A(t) = ν̇(t) · θ̂ + [ω̇(t) × r(t)] · θ̂ + {ω(t)[ω(t) × r(t)]} · θ̂ (6X1) (2.12)
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Figure 2.1: Coordinate system for the inertial and body frames
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Figure 2.2: Re-entry vehicle roll, pitch and yaw axes definition
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The equation is linear in the first term (the linear acceleration), linear in the
second term (the angular acceleration) and quadratic (nonlinear) in the third
term (the centripetal acceleration). As we shall see later, this nonlinearity has
a great impact upon our ability to solve the ODE’s and build an estimator for
the velocities.

Given an array of six accelerometers, it has been shown [1] that it is the-
oretically possible to determine A(t) and ω̇(t) from six measured accelerations
An(t), n = 1, 2, . . . , 6. Then, given initial conditions ω(0), we can integrate ω̇(t),
to obtain ω(t).

Dr. David H. Chambers of the Lawrence Livermore National Laboratory
(LLNL) has performed theoretical and computational analyses of this set of
nonlinear ODE’s [12]. The ODE’s are numerically stiff. Numerical solutions
have exponentially growing spurious solutions with very short time scales. The
spurious solutions can be eliminated by using an implicit or semi-implicit numer-
ical integration scheme. The semi-implicit numerical integration scheme used in
this analysis is second order accurate in time. The solution, however, depends
nonlinearly on the initial angular velocity vector ω(0) through the quadratic
centripetal acceleration term. The solutions are sensitive to stochastic mea-
surement noise, and problems arise with very low-frequency drift or bias in the
acceleration measurements. Given these difficulties, it has been suggested that
a modern estimation approach using the kinematic model and allowing for sto-
chastic measurement noise may offer an advantage in estimating the velocities.
This is the motivation for the work in this paper. We next develop the kine-
matic equations in state- space form in preparation for the development of an
estimation algorithm.

15



Chapter 3

Development of the
Kinematic System
Equations in State Space
Form

Let us now express the kinematic equations above in state-space form, because
it facilitates our use of modern estimation techniques [17, 20, 26].

In order to describe all six accelerometer locations, we define the 3X1 vector
θ̂m to be the sensing direction vector for accelerometer m, m = 1, 2, . . . , 6. It
represents the direction in which the accelerometer is mounted relative to the
body frame OB .

θ̂m , θm1ê1 + θm2ê2 + θm3ê3 (3.1)

, [θm1 θm2 θm3]T m = 1,2, . . . ,6 (3X1) Sensing direction
(3.2)

We define the following signal vectors used to describe the system kinematics:

A(t) , [A1(t) A2(t) · · · A6(t)]T (6X1) Measured Accelerations (3.3)

16



B(t) , [ω1(t) ω2(t) ω3(t) ν1(t) ν2(t) ν3(t)]T (3.4)

, [ωT (t) νT (t)]T (6X1) Velocities (3.5)

3.1 The Vector ODE Relating A(t) and Ḃ(t)

We can write a vector ordinary differential equation (ODE) describing the kine-
matics of the system as follows:

A(t) = T̃ Ḃ(t) + C[B(t)] (3.6)

where T̃ is a 6X6 constant matrix designed to be nonsingular and determined
by the spatial configuration of the accelerometer array in the DAIMU [1, 9, 12].
It is important to note that C [B(t)] is a quadratic function of the angular
velocities ω(t), but it is NOT a function of the linear velocities ν(t). We show
the details of T̃ and C[B(t)] in the following sections.

Because we shall be working in state-space, it is convenient to rearrange the
vector ODE as follows:

Ḃ(t) = T̃−1{A(t) − C[B(t)]} (6X1) (3.7)

or

Ḃ(t) = −T̃−1C [B(t)] + T̃−1A(t) (6X1) (3.8)

3.1.1 The Configuration Matrix T̃

With some manipulation of the basic kinematic equations and by using the
definitions of the coordinate system(s), we define the important matrices T̃ and
C[B(t)] as follows:

T̃ =[T̃ (1) T̃ (2)] (6X6) Configuration Matrix (3.9)

where T̃ (1) and T̃ (2) are 6X3 matrices with elements defined as follows:
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T (1)
mn = (rm × θ̂m) · ên m = 1, 2, · · · , 6 n = 1, 2, 3 (3.10)

T (2)
mn = θ̂m · ên m = 1, 2, · · · , 6 n = 1, 2, 3 (3.11)

This partitioning of the configuration matrix is convenient because we can
think of T̃ (1) as the 6X3 part of the matrix related to the angular acceleration
ω̇ and T̃ (2) as the 6X3 part of the matrix related to the linear acceleration ν̇.

For increased understanding and convenience, we can partition T̃ (1) into
three 6X1 column vectors T (1)

mn, n = 1, 2, 3 as follows:

T̃ (1) = [T (1)
m1 T (1)

m2 T (1)
m3] (3.12)

=




T (1)
11 T (1)

12 T (1)
13

T (1)
21 T (1)

22 T (1)
23

...
...

...
T (1)

61 T (1)
62 T (1)

63


 (6X3) (3.13)

where the elements of the three column vectors can be written:

T (1)
m1 = rm2θm3 − rm3θm2 m = 1, 2, · · · , 6 (3.14)

T (1)
m2 = rm3θm1 − rm1θm3 m = 1, 2, · · · , 6 (3.15)

T (1)
m3 = rm1θm2 − rm2θm1 m = 1, 2, · · · , 6 (3.16)

As before, for increased understanding and convenience, we can partition
T̃ (2) into six 3X1 row vectors θ̂T

m, m = 1, 2, . . . , 6 as follows:

T̃ (2) =




θ̂T
1

θ̂T
2
...

θ̂T
6




(6X3) (3.17)

18



where the six 1X3 row vectors can be written:

θ̂T
m = [θm1 θm2 θm3] m = 1, 2, . . . , 6 (1X3) (3.18)

3.1.2 The Centripetal Acceleration Vector C[B(t)]

The scalar centripetal acceleration term of the kinematic equation (2.12) is given
as follows:

{ω(t) × [ω(t) × rm]} · θ̂m = {[ω(t) · rm]ω(t) − [ω(t) · ω(t)]rm} · θ̂m (3.19)

= [ω(t) · rm][θ̂m · ω(t)] − [ω(t) · ω(t)][θ̂m · rm] (3.20)
= Cm[ω(t)] (3.21)

for m = 1, 2, . . . , 6,. Recognizing that the centripetal acceleration vector
C[B(t)] is a function only of the angular velocities ω(t) and not the linear
velocities ν(t), we can substitute C[ω(t)] for C [B(t)].

C[B(t)] = C[ω(t)] =




C1[ω(t)]
C2[ω(t)]

...
C6[ω(t)]


 (6X1) (3.22)

Further, using another notation for the vector inner product, we can write
the six elements of the centripetal acceleration vector as follows for m = 1, 2, . . . , 6:

Cm[ω(t)] = [ωT (t)rm][ωT (t)θ̂m] − [ωT (t)ω(t)][rm
T θ̂m] (scalar) (3.23)

Note that when programming this equation, there is a computational advan-
tage to substituting a constant ω2 for the quantity ωT (t)ω(t). In addition, this
equation for Cm can be written in a form that is sometimes more convenient
and useful, as we show next. In general, for 3X1 vectors x and y, it can be
shown that their cross product can be written as a matrix multiplication using
a skew-symmetric matrix Ω as follows:
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x × y =




0 y3 −y2

−y3 0 y1

y2 −y1 0







x1

x2

x3


 = Ω̃x (3.24)

=

∣∣∣∣∣∣

ê1 ê2 ê3

x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣
(3X1) (3.25)

Note that because Ω̃ is skew-symmetric [35], it has the property that Ω̃T =
−Ω̃. For our problem, we define Ω̃ as follows:

Ω̃[ω(t)] ,




0 ω3(t) −ω2(t)
−ω3(t) 0 ω1(t)
ω2(t) −ω1(t) 0


 (3X3) (3.26)

Using these identities, we can show that:

Cm[ω(t)] = {ω(t) × [ω(t) × rm]} · θ̂m (3.27)

= [ωT (t)rm][ωT (t)θ̂m] − [ωT (t)ω(t)][rm
T θ̂m] (3.28)

= {Ω̃2[ω(t)]rm}T θ̂m (3.29)

= rm
T Ω̃2[ω(t)]θ̂m (3X1) (3.30)

3.1.3 Decoupling the Continuous-Time Kinematic Equa-
tions

Noting that the centripetal acceleration term C[B(t)] is really a function only
of the angular velocity, we can write the basic kinematic equation as follows:

Ḃ(t) = −T̃−1C[ω(t)] + T̃−1A(t) (3.31)

Exploiting the above-mentioned property of C[B(t)], we can decouple the
set of six ODE’s into a set of three equations in the linear velocity and three
equations in the angular velocity. We do this by defining the 3X3 matrix Γ̃ to
be the inverse of the configuration matrix, T̃ , and partitioning it into a 3X6
upper part Γ̃U and a 3X6 lower part Γ̃D as follows:

Γ̃ , T̃−1 =

[
Γ̃U

Γ̃D

]
(6X6) (3.32)
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Using this definition, the equations become

Ḃ(t) = −Γ̃C[ω(t)] + Γ̃A(t) (3.33)

We can see that these equations are decoupled by expanding it as follows:

[
ω̇(t)
ν̇(t)

]
= −

[
Γ̃U

Γ̃D

]
C[ω(t)] +

[
Γ̃U

Γ̃D

]
A(t) (6X1) (3.34)

This decoupling operation has a great advantage for us in this application,
because it allows us to reduce the dimension of the state space from 6 to 3. By
inspection, we see that we can build an optimal nonlinear estimator using the
3X1 equation in the angular velocity to estimate ω̂(t). Given these estimates,
we can integrate the 3X1 equation in the linear velocity to obtain ν̂(t). We do
not need to build a 6-dimensional estimator.

3.2 Formulating the Kinematic Equations as an

Observable Continuous-Time Gauss-Markov
System Model

Even though we have created a state-space representation for the kinematic
ODE’s derived earlier, system theory tells us that development of a state esti-
mator requires that the state-space system must be observable [26, 28]. Simply
stated, a system is observable if measurements of its outputs are sufficient to en-
able us to identify completely the states. The system we have developed above
does not meet this criterion. The only measurements we have are those from
the accelerometers, and these do not help us evaluate the state vector Ḃ(t). The
system is not observable.

Fortunately, we are able to make the system observable by using two impor-
tant pieces of information: (1) The system can be de-coupled as noted above, so
we do not need measurements of the linear velocities. We need only measure-
ments of the angular velocities, for example from a Global Positioning System
(GPS). (2) Unfortunately, the constraints of the program dictate that we cannot
use GPS, so we must find an alternative. Fortunately, we have on board the
re-entry vehicle a three-axis magnetometer, from which we can obtain measure-
ments of the angular velocity vector ω(t).

We can now specify a continuous-time state-space Gauss-Markov model for
the system as follows:
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3.2.1 System Plant

ω̇(t) = −Γ̃UC[ω(t)] + Γ̃UA(t) + W (t) (3.35)

where W (t) is a 3X1 vector of white Gaussian noise (WGN) distributed with
mean zero and covariance R̃W , W (t) ∼ N [0, R̃W ].

3.2.2 System Measurements

The system output measurement equation is obtained simply from the mag-
netometer measurements of the angular velocities ω(t), with additive white
Gaussian measurement noise assumed.

y(t) = ω(t) + V (t) (3X1) (3.36)

where V (t) is a 3X1 vector of white Gaussian noise distributed with mean
zero and covariance R̃V , V (t) ∼ N [0, R̃V ].

Note that it is possible for the magnetometer measurements to be null mo-
mentarily when the magnetometer is aligned perfectly with the magnetic field
lines of the Earth. However, the probability of the magnetometer being aligned
perfectly with the Earth’s magnetic field for any extended period of time is
small. In addition, if the data were to include momentary “drop-outs ”because
of this, we could post-process the data to interpolate samples, etc. Our engi-
neering judgment is that this pathological situation is unlikely and not a severe
problem if it does occur.

3.2.3 Estimation of the Linear Velocities

The Gauss-Markov model given above is useful for forming the basis of an
Extended Kalman Filter (EKF) [17, 19, 24, 20, 29, 31] to estimate the three
angular velocities ω(k). We can exploit the fact that the ODE’s are decoupled to
estimate the linear velocities v(t) directly. Once we have the estimated angular
velocities ω̂(t) from the EKF, the 3 ODE’s for the linear velocities become
algebraic, so we can calculate ̂̇v(t) directly using the continuous-time form of
the ODE’s as follows:

̂̇v(t) = −Γ̃DC[ω̂(t)] + Γ̃DA(t) (3X1) (3.37)
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We can then integrate ̂̇v(t) using a numerical quadrature algorithm to es-
timate v̂(t). With estimates of both the angular and linear velocities, we now
have an estimate of the full state vector B(t).

3.3 Discrete-Time Gauss-Markov Model

For implementation on a digital computer, we need a discrete-time equivalent
of the continuous-time Gauss-Markov model developed in the last section. We
have at least two options for accomplishing this: (1) We can use the continuous-
discrete formulation of the EKF [17, 20]. For this algorithm, the ODE’s are
integrated using an ODE solver and the state estimates are computed using
a discrete-time filter formulation. (2) We can discretize the continuous-time
Gauss-Markov model and use the discrete-discrete EKF formulation, in which
both the Gauss-Markov model and the filter are implemented in discrete-time.
We choose to use the latter option, because the discretization of the model can
be accomplished reasonably, as follows.

3.3.1 Discretization Using a 2nd-Order Semi-Implicit Method

A discrete-time Gauss-Markov model [17, 20] can be created by de-coupling
the ODE’s and discretizing them using a second-order semi-implicit integration
scheme [37, 36]. First, define the quantity F [ω, t] as follows:

ω̇(t) = −Γ̃UC[ω(t)] + Γ̃UA(t) + W (t) ≡ F [ω, t] (3.38)

Next, apply the second-order semi-implicit integration method [37] to this
equation, denoting the iteration index by n = 1, 2, . . ..

ωn+1 = ωn +
1
2
∆t[F (ωn, tn+1) + F (ωn, tn) + G̃(ωn, tn)(ωn+1 − ωn)] (3.39)

The 3X3 Jacobian matrix G̃(ωn) is defined by the following:

G̃[ωn] , −Γ̃U
∂C[ωn]

∂ω

∣∣∣∣
ω=ωn

(3X3) Jacobian Matrix (3.40)

Expanding gives:

ωn+1 = ωn + ∆t[Ĩ − 1
2
∆tG̃(ωn)]−1Γ̃U [

1
2
(An+1 + An) − C(ωn)] (3.41)
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We can simplify this equation by making a reasonable and commonly-used
approximation; We can replace the term 1

2 (An+1 + An) with An. Additionally,
we define the 3X3 matrix Ψ̃[ω(k)] as follows:

Ψ̃n , ∆t[Ĩ − 1
2
∆tG̃(ωn)]−1 (3X3) (3.42)

where ∆t is the data sampling period in seconds. Expanding yields

ωn+1 = ωn − Ψ̃nΓ̃UC(ωn) + Ψ̃nΓ̃UAn (3X1) (3.43)

3.3.2 Discretized System Plant

To formulate the discretized Gauss-Markov model using the results from the
last section, let the discrete time index k = 1, 2, . . . equal the iteration index n.
We define the 3X3 matrix Ψ̃[ω(k)] as follows:

Ψ̃[ω(k)] , ∆t{Ĩ − 1
2
G̃[ω(k)]}−1 (3X3) (3.44)

where the 3X3 Jacobian matrix G̃(k) is defined by the following:

G̃[ω(k)] , −Γ̃U
∂C[ω(k)]

∂ω(k)

∣∣∣∣
ω=ω(k)

(3X3) Jacobian Matrix (3.45)

The 6X3 partial derivative in the Jacobian can be written as follows:

∂C[ω(k)]
∂ωT (k)

=




∂C1[ω(k)]
∂ω1(k)

∂C1[ω(k)]
∂ω2(k)

∂C1[ω(k)]
∂ω3(k)

∂C2[ω(k)]
∂ω1(k)

∂C2[ω(k)]
∂ω2(k)

∂C2[ω(k)]
∂ω3(k)

...
...

...
∂C6[ω(k)]

∂ω1(k)
∂C6[ω(k)]

∂ω2(k)
∂C6[ω(k)]

∂ω3(k)




(6X3) (3.46)

Using the results derived earlier, we see that for the re-entry vehicle, each
1X3 row of this Jacobian matrix can be written as follows (m = 1, 2, . . . , 6):
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∂Cm[ω(k)]
∂ωT (k)

= [ωT (k)rm]θ̂T
m + [ωT (k)θ̂m]rT

m − 2ωT (k)[rT
mθ̂m] (1X3)

(3.47)

Given these definitions, the discrete-time Gauss-Markov model for the states
can be written

ω(k + 1) = ω(k) − Ψ̃[ω(k)]Γ̃UC[ω(k)] + Ψ̃[ω(k)]Γ̃UA(k) + W (k) (3X1)
(3.48)

where W (k) is a 3X1 vector of white Gaussian noise (WGN) distributed with
mean zero and covariance R̃W , W (t) ∼ N [0, R̃W ].

3.3.3 Discrete-Time System Output Measurements:

The system output measurement equation is obtained simply from the mag-
netometer measurements of the angular velocities ω(k), with additive white
Gaussian noise assumed.

y(k) = ω(k) + V (k) (3X1) (3.49)

where V (k) is a 3X1 vector of white Gaussian noise distributed with mean
zero and covariance R̃V , V (k) ∼ N [0, R̃V ].

3.3.4 Estimation of the Linear Velocities v(k)

The Gauss-Markov model given above is useful for forming the basis of an
Extended Kalman Filter (EKF) to estimate the three angular velocities ω(k).
We can use the fact that the ODE’s are decoupled to our advantage in estimating
the linear velocities v(k). Given the estimated angular velocities ω̂(k) from the
EKF, we can calculate ̂̇v(k) directly using the continuous-time form of the ODE’s
as follows:

̂̇v(k) = −Γ̃DC[ω̂(k)] + Γ̃DA(k) (3X1) (3.50)

We can then integrate (sum) the ̂̇v(k) to estimate v̂(k). In practice, we use
a recursive trapezoidal rule algorithm [37] as follows:
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v̂(k) = v̂(k − 1) +
1
2
∆t[̂̇v(k − 1) + ̂̇v(k)] (3X1) (3.51)

for k = 2, 3, . . . , Ns, where Ns is the number of samples in the signal being
integrated.

3.3.5 Jacobian Matrices Required by the Extended Kalman
Filter

Referring to the section on the Extended Kalman Filter algorithm, we see that
the EKF requires some Jacobian matrices for the formulation. First, we must
define the nonlinear functions a[x(t − 1)], b[u(t − 1)] and c[x(t)] in the general
Gauss-Markov model according to the actual nonlinear functions in the Gauss-
Markov model for our application [17]. By inspection, we see that:

a[ω(k)] , ω(k) − Ψ̃[ω(k)]Γ̃UC [ω(k)] (3X1) (3.52)

b[A(k), ω(k)] , Ψ̃[ω(k)]Γ̃UA(k) (3X1) (3.53)

c[ω(k)] , ω(k) (3X1) (3.54)

With considerable analytical manipulation, we can show that the Jacobian
matrices required for the Extended Kalman Filter are written as follows:

Ã[ω̂(k + 1|k)] , ∂a[ω(k)]
∂ω(k)

∣∣∣∣
ω(k)=ω̂(k+1|k)

(3.55)

= Ĩ − G̃T [ω̂(k + 1|k)]Ψ̃T [ω̂(k + 1|k)] (3X3) (3.56)

B̃[ω̂(k + 1|k)] , ∂b[A(k), ω(k)]
∂A(k)

∣∣∣∣
A(k)

= Γ̃T
U Ψ̃T [ω̂(k + 1|k)] (6X3) (3.57)

C̃[ω̂(k + 1|k)] , ∂c[ω(k)]
∂ω(k)

∣∣∣∣
ω(k)=ω̂(k|k)

= Ĩ (3X3) (3.58)

Note that B̃[ω̂(k + 1|k)] is not required for the EKF in our problem.
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Chapter 4

The Extended Kalman
Filter Algorithm

The Extended Kalman Filter (EKF) is a state-space nonlinear state estimator
that provides estimates of the state vector at each time t [17, 20]. It is the op-
timal least squares estimator for problems of the kind we have formulated. The
EKF is an extension of the Kalman Filter (linear) because it handles a nonlinear
Gauss-Markov model. For this paper, we refer to [17] for the EKF development
and present here the following summary of the key equations needed to imple-
ment it. Figure (4.1) shows a block diagram of the re-entry vehicle system and
the EKF.

In this section, we use the following notation. The discrete time index is
denoted t. A “hat ”above a symbol denotes an estimate (e.g. x̂(t)). A tilde
above a symbol is used to denote an error or error covariance (e.g. x̃(t|t− 1) or
˜̃
P (t|t − 1)). The notation x̃(t|t − 1) is read “the error in the states at time t,

given data up to time t− 1 ”. The double tilde on ˜̃
P (t|t− 1) indicates an error

covariance matrix.

4.1 Discrete-Time Nonlinear Gauss-Markov Model

Given state vector x(t), initial state vector x(0), nonlinear functions a(·) and
b(·), system input vector u(t) and process noise vector W (t), we can write the
state propagation model as follows:

x(t) = a[x(t − 1)] + b[u(t − 1)] + W (t) State propagation (4.1)
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Given the system output measurement vector y(t), nonlinear function c(·),
and measurement noise vector V (t), we can write the measurement propagation
equation as follows:

y(t) = c[x(t)] + V (t) Measurement propagation (4.2)

where W (t) and V (t) are zero-mean white Gaussian noise sequences with
covariances R̃W and R̃V , W (t) ∼ N [0, R̃W ] and V (t) ∼ N [0, R̃V ]. When appro-
priate, we can modify this Gauss-Markov model to handle colored noise [25, 17].

4.2 Discrete-Time Extended Kalman Filter Al-

gorithm

Given the nonlinear Gauss-Markov model above, the discrete-time Extended
Kalman Filter algorithm is summarized as follows [17]:

Prediction

x̂(t|t − 1) = a[x̂(t − 1|t − 1)] + b[u(t − 1)] State prediction (4.3)

˜̃
P (t|t − 1) = Ã[x̂(t|t − 1)] ˜̃P (t − 1|t − 1)ÃT [x̂(t|t − 1)] + R̃W (t − 1) Covariance prediction

(4.4)

Innovation

e(t) = y(t) − ŷ(t|t − 1) = y(t) − c[x̂(t|t − 1)] Innovation (4.5)

R̃e(t) = C̃[x̂(t|t − 1)] ˜̃P (t|t − 1)C̃T [x̂(t|t − 1)] + R̃V (t) Innovation covariance
(4.6)

Gain

K̃(t) = ˜̃
P (t|t − 1)C̃T [x̂(t|t − 1)]R̃−1

e (t) Kalman Gain (4.7)
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Figure 4.1: Block diagram depicting the re-entry vehicle kinematics and the
Extended Kalman Filter
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Correction

x̂(t|t) = x̂(t|t − 1) + K̃(t)e(t) State correction (4.8)

˜̃
P (t|t) = {Ĩ − K̃(t)C̃[x̂(t|t − 1)]} ˜̃

P (t|t − 1) Covariance correction (4.9)

Initial Conditions

x̂(0|0) and ˜̃
P (0|0)

Jacobian Matrices

Ã ,
∂a[x(t − 1)]
∂x(t − 1)

∣∣∣∣
x(t−1)=x̂(t|t−1)

(4.10)

B̃ , ∂b[u(t − 1)]
∂u(t − 1)

∣∣∣∣
u(t−1)

(4.11)

C̃ , ∂c[x(t)]
∂x(t)

∣∣∣∣
x(t)=x̂(t|t)

(4.12)

4.3 Performance Measures for the EKF

(Tuning)

We now summarize methods for evaluating the performance of the Kalman
filter. When the Kalman filter is “tuned,”it provides an optimal or minimum
error estimate of the state vector. The innovations sequence is useful for
evaluating performance. A necessary and sufficient condition for the Kalman
filter to be optimal is that the innovations sequence is zero-mean and
white [29, 24, 17].
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4.3.1 Zero-Mean Test on the Innovations e(t)

If we assume that the innovations sequence is ergodic and Gaussian, then we
can use the sample mean as the test statistic in a zero-mean hypothesis test.
The mean for the ith component of e(t) is given by:

m̂e(i) =
1
N

N∑

t=1

ei(t) for i = 1,2, . . . p (4.13)

where m̂e(i) ∼ N(me, Re(i)/N), p is the number of measurements (the number
of components in e(t)) and N is the number of samples in the innovations
sequence. The hypotheses H0 and H1 in the hypothesis test are the following:

H0 : me = 0 (4.14)
H1 : me 6= 0 (4.15)

At the α significance level, the probability of rejecting the null hypothesis H0

is given by:

P

(∣∣∣∣
m̂e(i)−me(i)√

Re(i)/N

∣∣∣∣ >

∣∣∣∣
τi−me(i)√

Re(i)/N

∣∣∣∣
)

= α (4.16)

where R̂e(i) is the sample variance (assuming ergodicity) given by:

R̂e(i) =
1
N

N∑

t=1

e2(t) (4.17)

and τi is the threshold in the hypothesis test. Using a 5 % significance level
(α = .05), the threshold is

τi = 1.96

√
R̂e(i)

N
(4.18)

Therefore, using the definitions above, the zero-mean hypothesis test on each
component innovation ei is given by:
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m̂e(i) ≷H1
H0

τi (4.19)

In practice, we implement this test by plotting the innovations time series ei(t)
along with an overlay of the positive and negative threshold value on the same
plot. We then count the number of innovations samples that exceed the
threshold, divide that by the number of samples in the time series (N), and
compare that fraction with the significance level (α) to decide whether or not
the innovations can be deemed “white.” Of course, the test has limited value
unless the data are ergodic and Gaussian.

4.3.2 Innovations Whiteness Test

The “whiteness ”of the innovations is a measure of how well the Kalman filter
is tuned. Recall that a discrete-time stochastic process is white if its
autocorrelation function is a Kronecker delta [25] at zero lag. This suggests a
practical statistical hypothesis test for whiteness. Assuming ergodicity, we
develop a test based upon the normalized sample autocovariance function of
the innovations sequence as our test statistic:

ρ̂e(i, k) =
R̂e(i, k)
R̂e(i)

(4.20)

where the ith component innovations covariance is given by:

R̂e(i, k) =
1
N

N∑

t=k+1

[ei(t) − m̂e(i)][ei(t + k) − m̂e(i)] (4.21)

Note that i is the index on the number of measurements (i = 1, 2, . . . , p) and k
is the correlation lag index. For this test, N denotes the number of samples in
a data window over which the covariance is calculated, so k = 1,2, . . . , N.
Usually, we let N be the number of samples in the innovations time series.
Note that we sum from t = k + 1 to N to avoid the first sample (at zero lag),
which should equal one (the Kronecker delta) when we apply the hypothesis
test described next.

Asymptotically, for large N, it can be shown [32] that the test statistic is
Gaussian ρ̂e(i, k) ∼ N [0, 1/N ]; therefore, the 95% confidence interval estimate
of ρ̂e(i, k) is given by:
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Iρe = ρ̂e(i, k) ± 1.96√
N

(N > 30) (4.22)

Hence under the null hypothesis (ei(t) is white), ρ̂e(i, k) must lie within the
interval Iρe 95 percent of the time to accept H0; i.e., to declare that the
component innovation is white.

In practice, we implement this test by plotting the normalized autocovariance
ρ̂e(i, k) over N lags (N > 30), with the threshold 1.96/

√
N overlayed on the

same plot. We count the number of samples that exceed the threshold, divide
it by N, and compare that fraction to the significance level (.05 because we use
a 95 percent confidence interval) to decide whether the innovations are white.

4.3.3 Weighted Sum Squared Residual (WSSR)

The whiteness test above has great value for evaluating the whiteness of one
innovations component. For systems with multiple measurements, the analysis
of all the innovations separately can be cumbersome and may not provide
sufficient information about the performance of the overall system. The
Weighted Sum Squared Residual (WSSR) provides a method for whiteness
testing of the overall state estimate by aggregating innovations vector
information e(t) after a finite time window of length N into a single scalar test
statistic. It can be shown that the WSSR is related to an estimate of the
normalized innovations variance [34]. We define the WSSR as a scalar test
statistic ρ as follows:

ρ(l) =
l∑

k=l−N+1

eT (k)R−1
e (k)e(k) for l ≥ N (scalar) (4.23)

Note that the WSSR is evaluated only for l ≥ N , because we wish to inspect
the covariance at lags after which the transient has settled down to a
reasonable “steady-state.” The hypothesis test for overall whiteness becomes

ρ(l) ≷H1
H0

τ (τ = decision threshold) (4.24)

Under the null hypothesis, ρ(l) ∼ χ2(Np). However, for Np ≥ 30, ρ(l) is
approximately N(Np, 2Np) (see Anderson [31] or Schweppe [33] for details. At
the α significance level, the probability of rejecting the null hypothesis is
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P
(∣∣∣ρ(l)−Np√

2Np

∣∣∣ >
∣∣∣τ−Np√

2Np

∣∣∣
)

= α (4.25)

For a significance level of α = .05, the threshold is

τ = Np + 1.96
√

2Np (4.26)

where p is the number of measurements and N is the number of covariance lag
samples after which we wish to evaluate the WSSR. Note that the WSSR test
can be used for both stationary and nonstationary processes. Note also that
the value of N can be adjusted in the WSSR test.

In practice, we implement the WSSR test by plotting the WSSR for lags
beyond N and overlaying the threshold τ on the plot. We count the number of
WSSR samples that exceed the threshold, divide that by the number of WSSR
samples calculated and compare that fraction with the significance level α to
decide whether or not the aggregated innovation information can be deemed
white.

4.3.4 “Reasonableness Tests ” on Covariances

The covariances estimated by the Kalman filter algorithm can be used for tests
of how well the filter is tuned. When the filter reaches steady state (the
process is stationary), P̃ is a constant, so the estimates can be compared to
ensure that they are reasonable. We can test for:

R̂e(i) ≈ Re(i) and ̂̃
P (i) ≈ P̃ (i) (4.27)

4.3.5 Tests When the True State Vector is Known

When the true state vector Xtrue is known, we can plot the ”two-sigma”
statistical bounds ±2

√
Rei about the estimation error sequence {x̃(t|t)} and

±2
√

P̃i(t|t) about the innovations sequence {ei(t)}. If the covariance
estimates of the filter are reasonable, then 95 percent of the sequence samples
should lie within the two-sigma bounds. See [17] for a comprehensive
discussion of Kalman filter tuning and performance measurement.
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Chapter 5

Simulation Experiment

For algorithm testing purposes, we have constructed an artificial problem that
has some of the general characteristics of the DAIMU problem. This problem
allows us to analyze the performance of the modeling and estimation
algorithms before we apply actual experimental data to them. The algorithms
and experiments are implemented in MATLAB [38] software.

5.1 Choices for the Velocity and Acceleration
Vectors B(t) and Ḃ(t)

Recall that we can write the vector ordinary differential equation (ODE)
describing the kinematics of the system as follows:

A(t) = T̃ Ḃ(t) + C[B(t)] (5.1)

where T̃ is a 6X6 constant matrix designed to be nonsingular and determined
by the spatial configuration of the accelerometer array in the DAIMU. We use
simple sinusoids and parabolic functions for simulation. Recall the following
definitions from equation (3.6):

B(t) = [ωx(t) ωy(t) ωz(t) νx(t) νy(t) νz(t)]T (6X1) (5.2)

Ḃ(t) = [ω̇x(t) ω̇y(t) ω̇z(t) ν̇x(t) ν̇y(t) ν̇z(t)]T (6X1) (5.3)
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The individual angular and linear velocities (along with their derivatives and
initial values) are specified as follows. Note that the symbol Ω used in this
section does not have the same meaning(s) it did in previous sections.

ωx(t) = sin(Ωt), ω̇x(t) = Ωcos(Ωt) (5.4)
ωy(t) = cos(Ωt), ω̇y(t) = −Ωsin(Ωt) (5.5)

ωz(t) = ω0 + αt2, ω̇z(t) = 2αt (5.6)
νx(t) = cos(βt), ν̇x(t) = −βsin(βt) (5.7)
νy(t) = sin(βt), ν̇y(t) = βcos(βt) (5.8)

νz(t) = ν0 − γt2, ν̇z(t) = −2γt (5.9)

ωx(0) = 0, ω̇x(0) = Ω (5.10)
ωy(0) = 1, ω̇y(0) = 0 (5.11)
ωz(0) = 2, ω̇z(0) = 0 (5.12)
νx(0) = 1, ν̇x(0) = 0 (5.13)
νy(0) = 0, ν̇y(0) = β (5.14)
νz(0) = ν0, ν̇z(0) = 0 (5.15)

Ω = .3142 (5.16)
α = 4.e − 4 (5.17)
β = .2356 (5.18)

ω0 = 2 (5.19)
ν0 = 15 (5.20)
γ = −5.e− 4 (5.21)

Ts = .1 sec. (sampling period) (5.22)
N = 1000 (Number of samples in the data record) (5.23)
T0 = NTs = 100 sec. (5.24)

T̃ =




2.0076 180.1947 67.7616 0.8053 −0.2165 0.5519
2.9223 −31.2313 −189.8224 0.8075 0.5839 −0.0836
2.1828 −148.7878 122.0883 0.8069 −0.3675 −0.4623

157.8485 107.7899 −19.1435 −0.0063 −0.1659 −0.9861
157.5631 −72.3901 −81.9704 −0.0192 −0.7674 0.6409
157.8026 −37.1743 102.8329 −0.0066 0.9371 0.3490




(5.25)
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Figures (5.1) and (5.2) show the simulated B(t) and Ḃ(t) vectors generated in
MATLAB using the specifications above.

5.2 Simulate the Accelerations A(t)

Here, we use the chosen definitions above to simulate the accelerations using
the ODE simulator and plot them in Figure (5.3).

5.3 Simulate the States ω(t) Using the

Gauss-Markov Model

Using the acceleration vector A(t) and the initial conditions, we calculate the
noiseless states ω(t) from the Gauss-Markov model and plot them in
Figure (5.4). In Figure (5.5), the states calculated by the Gauss-Markov model
are overlayed on the states we defined. We see that they agree. We then add
white Gaussian measurement noise and plot the noisy measurements in
Figure (5.6).

5.4 Estimate the States ω̂(k) Using the

Extended Kalman Filter

Figure (5.7) shows a plot of the estimated states ω̂(k) from the EKF overlayed
on a plot of the simulated states ω(k). The corresponding estimates ŷ(k) of
the outputs are plotted in Figure (5.9). Figure (5.10) plots the simulated
outputs y(k) from the Gauss-Markov model overlayed on the estimated
outputs ŷ(k) from the EKF.

The estimated linear velocities ν̂(k) are obtained by integrating the estimated
̂̇ν(k) obtained by using the ω̂(k) from the EKF in the ODE (see the text). We
plot the estimated linear velocities in Figure (5.8). We see that the linear
velocity estimates are unacceptable. The numerical difficulties associated with
this calculation are described in a later section.

5.5 Examine the Performance of the EKF

We now examine the performance of the EKF using the methods described in
the text. First, we plot the innovations e(k) from the EKF along with their
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“two-sigma bounds ” in Figure (5.11) This plot shows that the exhibit good
behavior until near the end of the data record, where their means become
nonzero and their magnitudes increase with time.

Figure (5.12), Figure (5.13) and Figure (5.14) show the whiteness test plots for
the three components of the innovations vector e(k). Figure (5.12) shows that
the x-component of the innovations is not white. Even though the
autocovariance converges to a value inside the 2-sigma bounds, there are too
many samples outside the bounds at small lags. Figure (5.13) indicates that
the y-component of the innovations comes close to meeting the whiteness
criterion, because 7 percent of the samples of the autocovariance lie outside
the 2-sigma bounds, but our whiteness criterion requires less than 5 percent.
Figure (5.14) shows that the result for the z-component are about the same as
those for the x-component. The drift at the end of the estimation data records
is responsible for the lack of desired results.

Interestingly, we reach different conclusions about the EKF performance when
we examine the weighted sum squared error (WSSR) in Figure (5.15) for the
innovations vector e(k). Here, we see that the WSSR never exceeds its
threshold, so by this criterion, we can declare the EKF to be tuned. Even
though the numerical issues cause the WSSR to rise significantly at large lags,
the overall performance remains acceptable.

5.6 Mathematical/Numerical Performance
Issues

There are two mathematical problems associated with the DAIMU
configuration, and they both are evident in this example problem: (1) The
inherently unstable nature of the nonlinear ODE’s (discussed earlier), and (2)
The numerical problem associated with computing the difference
A(k) − C[ω̂(k)]. We discuss these next.

The ODE solutions contain drift/bias due to the nonlinear (quadratic)
centripetal acceleration term. This effect worsens with increasing angular
velocity [12]. We can see from the figures in the last section, especially
Figure (5.8), that this unstable nature of the nonlinear ODE’s cause the
estimates to diverge near the end of the data record.

Another problem is very apparent from this analysis. Recall the vector ODE
for the system kinematics:

Ḃ(t) = T̃−1{A(t) − C [ω(t)]} (6X1) (5.26)

There are numerical difficulties associated with calculating the difference
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A(k) − C[ω̂(k)] when the quantities in this difference are large, but the
difference is small. This is the case for this experiment. Figure (5.2) shows the
accelerations A(k). Figure (5.16) shows the centripetal accelerations C[ω̂(k)]
from the EKF and C [ω(k)] from the ODE simulator for this experiment. The
numerical problem is illustrated in Figure (5.17) which plots this key
difference. We see that the difference is small compared with the values of
A(t) and C[ω̂(k)].

Quadrature to compute the linear velocities was not successful for this
example. This is demonstrated in Figure (5.8). The numerical difficulty
described above leads to this result.

The positive aspect of this analysis is that the Extended Kalman Filter adds
great value in the presence of measurement noise. When noise is present, the
classical ODE solver is not effective. However, the EKF is designed to handle
noise, so the angular velocity and measurement estimates are of high quality
(see Figure (5.7) and Figure (5.10). In addition, the Weighted Sum Squared
Residual (WSSR) meets the whiteness criterion, even though the solutions
show drift at late times (see Figure (5.15). This indicates the EKF is tuned
sufficiently.
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Chapter 6

Future Work

In addition to the mathematical/numerical issues described in the last section,
the following issues are the subjects of current and future work.

6.1 Calibration and Error Compensation

An important issue under investigation is the fact that the actual sensor
locations r and directions θ̂ have uncertainty associated with them. The
tolerances associated with machining the DAIMU fixture can have a significant
effect upon the velocity estimates. Carlos Avalle [9] has reported that the
uncertainty in the accelerometer locations is on the order of a few mils.

These uncertainties have led to ongoing work to calibrate the DAIMU
assembly using a rate table and other means. The plan is to test and calibrate
single and multiple accelerometers. Part of this work involves building an error
compensation scheme employing a parameter estimator for the accelerometer
locations r and directions θ̂.

6.2 Perturbation Analysis

Along with the calibration work, David Chambers [12] has performed
sensitivity analyses showing that small perturbations in the accelerometer
locations and directions can lead to significant errors in the velocity
calculations, even when noise is not present. For example, The configuration
matrix T̃ (which must be inverted) is sensitive to these perturbations
(See [12]). This work is ongoing.
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6.3 Estimation Using Simulations of a Full
Flight Profile

David Chambers is building a simulator for the entire flight profile of interest
for the re-entry vehicle. This includes separation, drift, spinup and re-entry.
This simulator will allow us to analyze the estimator performance under
realistic controlled conditions in preparation for the real data. This simulation
should be more informative than the one used in this report.

6.4 Estimation Using Actual Flight Test Data

Actual flight test data have been analyzed by David Chambers using an ODE
solver [12]. The results indicate the need for state estimation, perturbation
analysis, calibration work and simulation. Processing of these data with the
state estimator will be the subject of a future report.
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Chapter 7

Conclusions

We are interested in calculating the angular and linear velocities of a re-entry
vehicle using six acceleration signals from a distributed accelerometer inertial
measurement unit (DAIMU). Earlier work showed that angular and linear
velocity calculation using classic ODE solvers is not practically feasible, due to
mathematical and numerical difficulties.

In this report, we have performed an analysis that demonstrates the theoretical
feasibility of using model-based nonlinear state estimation techniques to obtain
the angular and linear velocities in this problem. Practical numerical and
calibration issues require additional work to resolve.

We showed that the six accelerometers in the DAIMU are not sufficient to
provide observability, so additional measurements of the states are required
(e.g. from a Global Positioning System (GPS) unit). Given the constraint that
our system cannot use GPS, we propose using the existing on-board 3-axis
magnetometer to measure angular velocity. We further showed that the six
ODE’s for the vehicle kinematics can be decoupled into three ODE’s in the
angular velocity and three ODE’s in the linear velocity. This allows us to
formulate a three-state Gauss-Markov system model for the angular velocities,
using the magnetometer signals in the measurement model. This re-formulated
model is observable, allowing us to build an Extended Kalman Filter (EKF)
for estimating the angular velocities. Given the angular velocity estimates
from the EKF, the three ODE’s for the linear velocity become algebraic, and
the linear velocity can be calculated by numerical integration. Thus, we do not
need direct measurements of the linear velocity to provide observability, and
the technique is mathematically feasible.

In a simulation example, the estimator adds value over the numerical ODE
solver in the presence of measurement noise. Calculating the velocities in the
presence of significant measurement noise is not feasible with a classic ODE
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solver. The EKF is able to deal effectively with the noise and provide useful
angular velocity estimates. The linear velocity estimates for this simulation
show numerical difficulties associated with the nonlinear ODE’s and the
quadrature operation.

Future work will focus on dealing with practical numerical issues and the issue
of calibrating the DAIMU to deal with uncertainties in the accelerometer
positions and locations.
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